Diel Phosphorus Variation and the Stoichiometry of Ecosystem Metabolism in a Spring-Fed River

Matt Cohen, Marie Kurz, Jon Martin, Rachel Douglass, Ray Thomas University of Florida

Jim Heffernan Duke University

Coupling of Elements: From Cells to the Biosphere

- Elements can constrain metabolism.
 - Increasing availability can lead to excess C fixation
 - Organism stoichiometry <u>differs</u> from supply
- Metabolic activity couples element cycles across scales
 - Ecosystem scale is of particular interest
- Coupling is direct + indirect
 - Direct autotroph assimilation
 - Indirect effects on redox, pH, heterotrophs

Gruber and Galloway 2008

"Ecology <u>in</u> Streams" Streams as Model Ecosystems

- Flow creates coherent (diel) downstream signals from ecosystem metabolic processes
- Carbon: Diel O₂ for riverine GPP, R (Odum 1956)

 Nitrogen: Diel NO₃ for autotrophic N demand (Heffernan and Cohen 2010)

North Florida's Springs as Model Rivers

- High GPP (clear water)
- Stable flow; no scouring floods
- Constant source water chemistry
- Constant temperature

• Natural laboratory for coupled elemental cycling in ecosystems

Coupled Carbon and Nitrogen Cycles

- DIRECT: Net primary production and U_{a,N} are strongly correlated and yield plausible C:N
- INDIRECT: U_{den} is correlated with R <u>and</u> previous days' GPP (short and long term coupling)

Research Questions: Coupled Carbon and Phosphorus Cycles

- Is there a coherent diel SRP signal?
- Is the diel signal **controlled by metabolic processes**?
 - Directly via autotrophic assimilation?
 - Indirectly via pH or redox sensitive geochemical reactions (e.g., Ca, Fe)?
- What is the **stoichiometry (C:N:P) of ecosystem metabolism** and how does it vary?
 - Does it indicate the dominant autotrophs?
 - Does it change at daily and seasonal time-scales?

Conceptual Model of Diel P Dynamics

Extracts P removal due to assimilation **and** co-precipitation which produce signals that are out of phase

Site

- Ichetucknee River
 - High Flow ~ 6 9 m³/s
 - Constant input chemistry
 - FW NO₃ ~ 620 ppb, PO₄ ~ 48 ppb
 - High GPP (5 \pm 2 g C m⁻² d⁻¹)

- 8 deployments, 5-12 days
 - Sensors at South Take Out, 5 km from Ichetucknee Headspring

Sensors

- C fluxes + calcite dynamics
 - YSI 6920, Optical DO, SpC
- N fluxes from nitrate
 - Satlantic SUNA (UV NO3)
- P fluxes from phosphate
 - Wetlabs Cycle-PO4

Geochemical Interactions

- Diel SI_{cal} responds to GPP

 Day: Precipitation, Night: nothing
- No other significant geochemical sinks

- [Ca] well predicted by specific conductance (SpC)
- Calcite co-precipitation kinetics from House (1990)

Raw Data (Dec 2010)

Unexpected Timing of P Dynamics

P Assimilation vs. GPP

P Removal in Context

- Uptake dominates removal
 - Biotic removal ~ 70%
 - Co-precipitation ~ 30% (exported as calcite particles?)
- Spiraling metrics indicate <u>huge</u> supply vs. demand
 - Uptake length ~ 42 km
 - Matches 5th order river spiraling (Ensign & Doyle 2006)
 - Zeroth order removal?

Ichetucknee is a NET SOURCE of P

A Phosphorus Source?

- Magnitude inferred from varying [SRP] baseline
- Baseline covaries with respiration and flow
 - Redox sensitivity? Hydraulic gradient?
- Interstitial porewater has high SRP (ca. 150 ppb)
 - H1: [SRP] varies with R
 - H2: P flux varies with hydraulic gradient

Predicting Diffuse Flow: Evidence from P Mass Balance

- Assuming porewater
 [SRP] (150 ppb), what is diffuse lateral flow to close river P budget?
- Strong f(flow), declining inputs at high stage
- Matches [Cl] budgeting
 0.6 m³ s⁻¹ (de Montety et al. 2011)

Ecosystem C:P Stoichiometry

P Assimilation LAGS Primary Production

- H: Ribosome production occurs when cell energy stores are maximum
 - Ribosomes dominate P
 demand (Falkowski 2000, Elser and Sterner 2002)
 - Literature evidence that rRNA maximum is at midnight (Paul et al. 1988)
 - H₁: Diel rRNA:DNA
 variation with peak at
 maximum P removal

Summary: Ecosystem Scale C and P Coupling

- Coherent diel [SRP] signal, varying amplitude
- Signal is convolution of 2 out-of-phase processes
 - Calcite co-precipitation (ca. 30% of removal)
 - Biotic assimilation (ca. 70% of removal)
 - Combined removal < 10% of total P flux</p>
- Calcite-corrected removal yields plausible C:P
- Discrete springs are NOT the only source of P
 Lateral seepage flux controlled by R_{eco} and hydraulics
- P assimilation lags GPP by ca. 8 hours
 Signal from the cell to the ecosystem?

Thank You. mjc@ufl.edu

Weld 197 AN A RECENT PARKS OF A DECEMPERATION OF

Acknowledgements:

Larry Korhnak, Ginger Morgan, Rob Mattson and Erich Marzolf

undin

NSF EAR-0838369/EAR-0609968, Three Rivers Trust, SJRWMD #25941

100 A 640 A 650 A 18-